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ABSTRACT

It is shown that those interactions of an elastic body B with an
elastic environment E manifested by local surfacial loadings should be
modelled by boundary operators featuring a live system of surfacial forces,
ji.e., a vector field s, defined over the boundary /88 of B and
tepresenting the surfacial force per unit area exerted by E over B, which
depends functionally in a non-trivial way on the deformation u of B.

r = In particular, under the assumptions that the constitutive equation of B
is compatible with ellipticity, and s is a function of the appropriate
restrictions to 9 of u and its gradient, it is also shown that it is

b reasonable to require that the resulting live-boundary condition of traction
B be genuine, i.e., a normality condition prevail insuring the primary

. consistency of the pair of field and boundary operators.

In addition to the analytical difficulties to be expected>€cf. 72,0
Chapter 2), when normality does not hold the mechanical interpretation of
boundary conditions fails to be unique. That this is indeed the case is
demonstrated by producing an explicit example in linearized elastostatics of a
boundary operator which can be interpreted as a non-genuine live-boundary
condition of traction or as a dead-boundary condition of frictionless contact.
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SIGNIFICANCE AND EXPLANATION

In the real world, most loadings "follow" the deformation or, in the
terminology used in this paper, are live, in that their direction and/or their
magnitude may vary with the deformation itself (the hydrostatic pressure on a
submerged object and jet loading are common examples of live loadings;
buckling of elastic rods and plates and panel flutter are examples of statical
and dynamical problems from structural engineering and aerocelasticity,
respectively, where live loadings make an essential feature).

In spite of its practical importance and deep mathematical interest, a
general treatment of live loadings in linear and non-linear (and, especially,
three-dimensional) elasticity is still lacking.

The purpose of this paper is to delineate circumstances under which one
can expect a given boundary condition to represent realistically an unambigu-
ous mathematical model for live surface loading. It is shown that the
ellipticity up to the boundary of the field operator, as well as the normality
of the pair of field and boundary operators, both play a crucial role
(ellipticity is a requirement of physical and mathematical plausibility of
general use in elasticity; normality is a basic mutual consistency requirement

for field and boundary operators in the theory of elliptic systems, receiving
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a precise mechanical interpretation in this paper). NTIS  GRAKI
DIIC TAB g
- Unamnounced R |
; Justificatio
I 133’
* Distribution/
= - - B
« Avallability Codes
) Avail and/or T
S /) ' Special

"y

The responsibility for the wording and views expressed in this descriptive. ... ____ __|
summary lies with MRC, and not with the authors of this report.




S TR T T W W W W W I e Ve T Ot [ Sadh Iagt St el

B S Cal S Sl A Ml e Al S A AR " o e D" el B gt e i S e A i i g ou |

THE ROLE OF ELLIPTICITY AND NORMALITY ASSUMPTIONS IN
FORMULATING LIVE-BOUNDARY CONDITIONS IN ELASTICITY

P. Podio-Guidugli*, G. Vergara Caffarelli** and E. G. Virga***
1. Introduction
The mechanical interaction of a body with its environment is a varied and
complex phenomenon which is difficult both to observe and describe carefully.
Boundary conditions modelling non-trivial interactions are difficult to
formulate mathematically; besides, they may easily lead to unusual boundary

value problems, perhaps even so much unusual as to challenge and defeat an

expert analyst. Not only that, blunt generalization of the few well-

understood types of boundary conditions may pose rather subtle problems of

d! interpretation and classification to the expert mechanist.

:‘ In Section 2, the bulk of this paper, we develop a train of reasoning
3;1 leading to formulate an unambiguous boundary condition of traction,

h reproducing the non-linear interaction of an elastic body and an elastic

environment in strict contact with it; the emphasis here, in accordance with

our title, is on the role played by ellipticity and normality hypotheses.

In Section 3, we briefly discuss the importance of ellipticity and
normality in problems of elastostatics linearized about a stressed equilibrium
placement. 1In particular, we show by means of an explict example that, if the
environment is live but normality fails to hold, one can easily run into

taxonomic troubles.

* Dpipartimento di Ingegneria Civile Edile, Universitd di Roma-Tor Vergata,
00173 Roma, Italy.

** Dipartimento di Matematica, Universitd di Pisa, 56100 Pisa, Italy.
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Italy.
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state (i.e., the triplet of displacement, strain and stress) over B U E,
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2. The Genuine Live-Boundary Condition of Traction

Let a (possibly unbounded) open reg:lar region B of RM, with M = 2
or 3, be separated by its exterior t by a smooth orientable surface S,
the common boundary of B and £, with n the exterior unit normal to B.

Once constitutive prescriptions have been given, we may think of B as
the body, and of E  as the environment of the body B.* Then, given any
judiciously chosen set of data, we may formulate a variety of mechanically

significant problems, anyone of which ultimately reduces to determine the

provided a suitable set of jump conditions has been stipulated for the state
at the points of S.

Ioosely, our goal is to sketch a credible scenario where a large class of
such problems for B Y E can be reduced through a rational procedure to one
corresponding problem for B =B US, with the presence of E replaced by a
set of boundary conditions on S. 1To anticipate one of our main findings,
perhaps not about to come as any great surprise to the knowledgeable reader,
these boundary conditions will as a rule be of the live type, i.e., they will
be prescriptions of the surfacial stress vector which depend functionally in a
ron-trivial way on the solution in B.

Now, let u, T denote the restrictions to S of the unique extensions

&, T to é of smooth displacement and stress fields &, T over B;

further, let (u,t), with t = Tn, denote the pair of fields over S con-

sisting of the displacement u and the stress vector ¢t; finally, let (v,s)

* Notice that here we implicitly choose to not consider the interesting case
when 5 itself is thought of as a material surface (in the manner, e.g., of
GURTIN & MURDOCH [1]), and, therefore, made the object of a peculiar constitu-
tive prescription. To contemplate such a case would require a more delicate
analysis.
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be defined over S 1in a completely analogous way, but starting from displace-
ment and stress field v and & defined over E. We wish to interpret

v(x), s(x) as, respectively, the displacement of boundary point x of the
environment and the contact force exerted at x by the environment over the
body.

A rather spontaneous assumption is that such contact force depends
functionally on the displacement field over EUVS, Suppose that the stress
response of £ to deformation have a local character, as 1s the case for
an elastic environment. Then, for x € S fixed, and for any given field ;

on E, one finds natural to choose the functional dependence of s on Vv as

follows

(2.2) s(x) = {(v(x),pv(x)),

where D 1is the gradient operator.

A slight generalization of such a choice, of importance in our further
developments, is suggested by the splitting of the gradient operator D, at a

point x €S, into its normal and tangential parts D, and Dg:

(2.3) DV(x) = D v(x) + D v(x) ,
: with
o
(2.4) Dnv(x) = 3nV(x) 2 n{x) , DtV(x) = Dtv(x) ’
- and with an denoting the operation of differentiating along the direction
. n(x), the normal to § at x. Then, in view of (2), (3) and (4), one is
induced to replace (2) by
B _ .
(2.5) s(x) = 6(v(x),Dtv(x),3nv(x)) .
' -3
P A e e Ty o
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Our next step is to lay down a set of jump conditions for the state at
the points of S.

’ We say that the body B and its environment E have a strict contact in

a neighbourhood of a point x of their surface of separation S if

; (2.6) u(x) = v(x) & ¢t(x) = s(x) .
)
In a strict contact, both the displacement and its tangential gradient
suffer no jump at S; besides, the continuity of the stress vector at S
I implies in general restrictions on the jump condition for the normal

derivative of displacement. To motivate the ad hoc assumptions we shall make

to determine those restrictions, we turn momentarily to linear elasticity.
Suppose that B and E, besides being in strict contact, are made up

with two linearly elastic materials with elliptic elasticity tensors C and

D, respectively, so that C, say, obeys
-] o (-]
(EC) det C (a) # 0 for C ih(a) = cijhka'ak' a¢o.

J

If C (D) can be firstly extended and then restricted to S in such a way as

! to preserve ellipticity, the matrix field
(2.7) A=c’(n) (B=D0"(n))
f has invertible values on S, Thus, as
(2.8) t = (CDWn = A3 U + (CD uin,

we have that

. -1

. 9 = - (CD . u)n
) (2.9) L9 A (t ( e )n) ,
}
K. -4-
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a formula which shows that, once u is assigned on S, t and 3na are

essentially interchangeable bits of information at a point of S. Likewise,

(2.10) 3v=pn s - (DD, w)n) .

Thus, in particular, if B and [ are in strict contact, linearly elastic

and elliptic, the normal derivative of displacement suffers at S a discon-
tinuity depending on the local values of the stress vector and the tangential
gradient of displacement, as (A,C) and (B,D) may be expected, in general,

to differ.

Remark 1 It is important to note that ellipticity, and not linearity of the

constitutive law, is the crucial assumption. Indeed, for B comprised of a

non-linearly elastic material, (8), is replaced by
(2.11) t = T(Bnuﬂn + Dtu)n '

and this equation is locally solvable for 3nﬁ if the Ellipticity Condition

prevails, i.e.,

(EC) det C(a) # 0 for C;p(a) = Tijhkajak , a#0, T= 3T .

3 (Du)

Remark 2 For boundary-value problems ruled by PDE's, ellipticity hypotheses

typically involve the coefficients of the field operator; here, EC plays an

important role at the boundary.
In the light of the above, if one assumes that B and E have a strict
contact, then (6) allows one to give (5) the following provisional form:

(2.12) s(x) = 4 (u(x), D _u(x), Bn\'/(x)) .

t
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Moreover, for elliptic elastic pairs of a body B and an environment E,
L] -
1t seems safe to assume that both 3nu and 3nv depend on the tangential

gradient and the stress vector
1 3 u= u 3 v =
(2.13) oY u( tu,t), nY U(Dtu,s)

and that the dependence on the stress vector is essential, in that the

] U 9V . .
matrices <+, =— are invertible.
9t Js

By (12) and (13), there exists a function g such that
{2.14) s(x) = glu(x), Dyu(x), s(x)) .

Last step towards our goal, we assume the condition (14) is genuine, in that
for ro assignment of u, Dy u it does reduce to an identity in s.

Accordingly, we require that
. 3
(Gg) det L # 0, with L=1-§%-

G¢ implies that (14) is locally solvable for s; then, s can be expressed
as a function of u and Dgu:

(2.15) s(x) = A(u(x), Dtu(x)] .

The last formula suggests that in formulating boundary value problems the

contact force exerted by the environment on the bndy ought chosen in general

to be of the live type.

Pemark 3 The special dependence (15) of s on boundary information
concerning the solution has been considered by SPECTOR [2,3], who has termed
simple such surfacial loading operators. SPECTOR has motivated his choice by

the observation, due to GURTIN (4], that pressure loading, a well-known

example of live loading, is indeed simple.




Remark 4 For two linearly elastic elliptic bodies in strict contact, (12)
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takes the form
L]
s = B v + (DD u)n
n t

and is readilly inverted as

(2.10) 3 v =258 (s - (DD u)n) ,
n t

which in turn corresponds to (13)2 . Therefore, (14) reduces to a sheer
identity, and GC cannot be satisfied. This indicates that, in general, it is
not sound to require GC in a contact situation. However, on passing from
contact to boundary conditions, we believe that one can regard (13), as a

separate constitutive assumption, independent of (12) and consistent with it

in the peculiar sense made explicit by GC.

Substitution of (15) into (13)2 and, when use is made of (6)2, into
(13)4, allows us to complete with a suitable jump condition for the normal
derivative of displacement the set of jump conditions for the state to be
stipulated at a point of S. In summary, under hypotheses of strict contact,
ellipticity and genuinity, the displacement u and its tangential gradient
Dyu must be continuous, whereas the normal derivative 3n6 of displacement
may suffer a jump described by a function of u and Deu, whose choice has
congtitutive character.

We are now in a position to state a boundary condition of traction which

would describe a large class of contact actions exerted by an environment of

elastic type on an elastic body.

Naively, one would write a live-boundary condition of traction for B as

t(x) = s(x) for x e §,
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or rather (cf. (2) and (11)), as

(2.16) Z (u, D, ? W(x) =0 for x €S,

t

with the boundary operator I defined by
. . -~ .
(2.17) T(u, D_u, 3 u) = T(J uln + D uln - f(u, 3 uen + D u) .

Un the other hand, in view of (6), (13)4 and (15), the boundary operator

should have the following form
(2.18) L(u, Dtu, Bnu) = 3nu - ulu, Dtu) .
Now, % 1is locally reducible to 2 if the implicit equation
i(\ll DtUp anu) =0

can be locally solved for 3nﬁ: this is the case if the following Normality

Condition holds:

(NC) det M(n) # 0 for M(n) = C(n) - fn, £ = -gﬁj- .
9 (Du)

Within the scenario we have set up, accepting NC is mandatory. We

~

observe that EC implies NC when the environment is dead, and 6 reduces to an

~

assigned function of x only over ; more generally, when § is indepen-
dent of the deformation gradient; finally, when § is simple in the sense of
Remark 3.

we call (16), with % restricted by NC, the genuine live-boundary

condition of traction.




3. Ellipticity and Normality in Linearized Elastostatics

When one passes from a local study of a non-linear problem to the
corresponding linearized problem, both EC and NC continue to play an important
role. Indeed, our present NC is a version appropriate to elasticity of the
homonymous condition introduced by GEYMONAT (5] and GRUBB [6] in the general
theory of linear elliptic systems, and appears to be the natural extension to
systems of the normality condition for scalar operators (vid. e.g. [7], Chapter
2).

If EC and NG prevail, we have shown in [8] that a Green formula, which
generalizes the reciprocity formula of Betti of classical elasticity, can be
associated to the traction boundary value problem of linearized elastostatics
with live loads. Such a Green formula allows one: (i) to define formal
adjoints to both the field and boundary operator; (ii) to determine a set of
conditions sufficient for self-adjointness; (iii) to state compatibility
conditions on the data necessary and sufficient [9] for solvability of the
underlying boundary-value problem in a familiar Hilbert space setting.

We now wish to give an example of the ambiguities t..at may accompany the
failure of NC.

In view of (2.,16), a linearized live-boundary condition of traction can

be written as
(3.1) (TDU(x))n(x) - £OU(x) - Fulx) = O,

where u, with slight abuse of notation, is now used for the first approxi-

mation of the displacement from the reference placement;

(3.2) t(x) = (TPu(x))n(x);
(3.3) s{x) = fDG(x) + Fu(x), with F = %é .
-9-
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Choose §  to describe a live environment such that

AN fink = Pi1T13hk™5/ Fin = ~Pip -

w.*n P a perpendicular projection field over S. Then, it is easy to check

“at the matrix  M(n), which appears in the statement of NE, reduces to
RIS M(n) = (1 - P)C(n),

ard 15, therefore, singular, whereas (1) takes the aspect

Vle) (1 - P)t + Pu =0,
-
F oo, wpurvalently,
d
O
3 3.7 (1t -P)t =0 & Pu=20.
b
;
f— jromptly recognizes in (7) a generalized boundary condition of the dead
“yge tt. 1101, Chapter V). In particular, when P = n@n, (7) reduces to the
-~calle ! coentact boundary condition:
- t - (t*n)n =0 & wuen =0,
f, ¥ as in (4) and P = n®n, the boundary condition (1) can be
L t+ . ~ .l lasrified as a live-boundary condition of traction or as a dead-
3
o
g S ndition of contact.
. 1bes simrlar examples can be concocted. But, the validity of NC
‘s
P - jroocobivre s any pathology.
o
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is compatible with ellipticity, and s is a function of the appropriate
restrictions to 9B of u and its gradient, it is also shown that it is
reascnable to require that the resulting live~boundary condition of traction
be genuine, i.e., a normality condition prevail insuring the primary
congistency of the pair of field and boundary operators.

In addition tc the analytical difficulties to be expected (cf. (7],
Chapter 2), when normality does not hold the mechanical interpretation of
boundary conditions fails to be unique. That this is indeed the case is
demonstrated by producing an explicit example in linearized elastostatics of a
boundary operator which can be interpreted as a non-genuine live~boundary
condition of traction or as a dead-boundary condition of frictionless contact.
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